
 

Predictability of Anomalous Storm Tracks 
from Seasonal to Decadal Scales 

 

 

Gilbert P. Compo and Prashant D. Sardeshmukh 

 

 

NOAA-CIRES Climate Diagnostics Center 

University of Colorado at Boulder 

 

 

 

Submitted to the Journal of Climate 

September 10, 2003 

 

 

 

 

 

 

Corresponding author: Dr. Gilbert P. Compo, NOAA-CIRES Climate Diagnostics Center 

R/CDC1, 325 Broadway, Boulder, CO 80305-3328. (303) 497-6115. compo@colorado.edu 

 

 

 

 



 2

Abstract 

This paper is concerned with estimating the predictable variation of extratropical daily weather 

statistics ("stormtracks") associated with sea surface temperature (SST) changes on interannual to 

interdecadal scales, and its magnitude relative to the unpredictable noise.  The SST-forced 

stormtrack signal in each winter in 1950-99 is defined as the mean stormtrack anomaly obtained 

in an ensemble of atmospheric general circulation model (GCM) integrations with prescribed 

observed SSTs.  Two sets of relatively small (9- to 13-member) ensembles available from two 

modeling centers (NCAR and NCEP), with anomalous SSTs prescribed either globally or in the 

tropics alone, are used.  Since the stormtrack signals cannot be derived directly from the archived 

GCM output, they are diagnosed from the SST-forced winter-mean 200 mb height signals using 

an empirical linear stormtrack model (STM).  For two particular winters (the El Nino of JFM 

1987 and the La Nina of JFM 1989), the stormtrack signals and noise are estimated directly, and 

more accurately, from additional large (60-member) ensemble runs of the NCEP GCM.  The 

linear STM is shown to be remarkably successful at capturing the GCM's stormtrack signal in 

these two winters, and is thus suitable for estimating the signal in other winters. 

 

The principal conclusions from this analysis are as follows.  A predictable SST-forced stormtrack 

signal exists in many winters, but its strength and pattern can change substantially from winter to 

winter.  The correlation of the SST-forced and observed stormtrack anomalies is high enough in 

the Pacific-North American (PNA) sector to be of practical use.  Most of the SST-forced signal is 

associated with tropical Pacific SST forcing; the central Pacific (Nino-4) is somewhat more 

important than the eastern Pacific (Nino-3) in this regard.  Variations of the pattern correlation of 

the SST-forced and observed stormtrack anomaly fields from winter to winter, and among 5-

winter averages, are generally consistent with variations of the signal strength, and to that extent 

are identifiable a priori.  Larger pattern correlations for the 5-winter averages in the second half 

of the 50-yr record, and also the 50-yr stormtrack trend, are consistent with the stronger ENSO 

SST forcing in the second half.  None of these conclusions, however, apply in the Euro-Atlantic 



 3

sector, where the correlations of the SST-forced and observed stormtrack anomalies are found to 

be much smaller.  Given also that they are inconsistent with the estimated signal to noise ratios, 

substantial GCM error in representing the response in this region to tropical SST forcing, rather 

than intrinsically low Euro-Atlantic stormtrack predictability, is argued to be behind these lower 

correlations. 
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1. Introduction. 

It is well known that the statistics of extratropical daily weather (“stormtracks”) averaged 

over individual winter seasons, decades, and even longer intervals are not constant but vary 

substantially from one interval to the next.  These variations have a random part associated with 

sampling fluctuations and a potentially predictable part associated with slow changes in 

atmospheric boundary conditions and atmospheric composition.  This paper addresses the 

problem of estimating the predictable signal associated specifically with sea surface temperature 

(SST) changes, and its magnitude relative to the random noise.  This signal to noise ratio has a 

simple relationship to the potential skill of stormtrack anomaly forecasts, and is thus a useful 

measure of stormtrack predictability.  

Many studies have assessed the predictability of atmospheric variations associated with 

anomalous SSTs, especially those associated with the ENSO phenomenon.  They have focused 

mostly on seasonal to multiyear averages of a few select variables such as geopotential height, 

surface temperature, and precipitation (e.g. Kumar et al. 1996; Chen and van den Dool 1997; 

Brankovic and Palmer 1997, 2000; Rowell 1998; Anderson et al. 1999; Koster et al. 2000; 

Graham et al. 2000; Shukla et al. 2000; Peng et al. 2000, 2002; Zwiers et al. 2000 and references 

therein; Kumar et al. 2003).  As demonstrated, however, in several recent studies using large 

AGCM ensembles (Sardeshmukh et al. 2000, Schubert et al. 2001, Compo et al. 2001), ENSO-

related SST anomalies affect more than the mean circulation around the globe.  They also alter 

the variability  indeed the entire probability distribution  of atmospheric variables from daily 

to seasonal scales. The predictability of the second and higher moments of the distribution has 

thus far received almost no attention.  

There is substantial observational evidence of an ENSO effect on northern hemispheric 

stormtracks, extending eastward from the central north Pacific across north America and the 

Atlantic to Europe (e.g. Fraedrich 1990, 1994, Fraedrich and Muller 1992, Hoerling and Ting 

1994, Straus and Shukla 1997, May and Bengtsson 1998, Matthews and Kiladis 1999, Smith and 

Sardeshmukh 2000, Sardeshmukh et al. 2000, Carillo et al. 2000, Compo et al. 2001).  The 
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observations also suggest a somewhat different effect for El Nino and La Nina forcing, thus 

hinting that it may vary from ENSO case to case, with obvious implications for stormtrack 

predictability.  The limited observational record, however, compromises estimating such case-

dependent and/or nonlinear signals with statistical significance, and it also compromises 

estimating the stormtrack noise essential for assessing predictability.  A similar remark applies to 

most previous assessments of these effects made using small AGCM ensembles.  To remedy this 

situation, Compo et al. (2001) examined much larger 60-member ensembles of seasonal NCEP 

AGCM integrations with prescribed observed global SSTs for one El Nino (JFM 1987) and one 

La Nina (JFM 1989) case, and were able to conclude with much greater confidence that the SST-

forced stormtrack signal may indeed vary substantially from case to case, especially over the 

North Atlantic and Europe.  They could also demonstrate a statistically significant stormtrack 

signal in many regions not usually associated with an ENSO effect. 

Demonstrating the existence of a signal is, of course, not the same as demonstrating its 

predictability or usefulness.  What matters for predictability, and usefulness, is the size of the 

signal relative to the noise.  Compo et al. did not consider this question explicitly, our principal 

concern here. 

The signal and noise for any quantity may be estimated from ensemble integrations as the 

ensemble mean anomaly and ensemble spread, respectively.  The upper right panel of Fig. 1 

shows their ratio S for the SST-forced stormtrack anomalies in JFM 1987 estimated from the 60-

member NCEP AGCM ensembles considered by Compo et al.  To generate this plot, the winter 

(JFM) mean stormtrack anomaly was defined for each ensemble member at each geographical 

location as the deviation of the winter-mean 2-to-7 day bandpass variance of 500 mb vertical 

velocity (omega) from the ensemble-mean bandpass variance obtained in a 90-winter ensemble 

with prescribed climatological JFM SSTs.  The stormtrack signal associated with JFM 1987 SSTs 

was then obtained as the ensemble-mean of the 60 stormtrack anomaly values, and the noise as 

the rms deviation of the 60 values from this mean.  Figure 1 also shows the S values for the SST-

forced winter-mean 500 mb omega and precipitation anomalies obtained in a similar manner. As 
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suspected, the stormtrack S values are modest, but comparable in magnitude to the S values for 

500 mb omega and precipitation.  Indeed the figure strongly suggests that the predictability of 

winter-mean precipitation is as much tied to the predictability of the winter-mean 500 mb omega 

stormtrack as to that of the winter-mean 500 mb omega.  Mainly for this reason, we will restrict 

ourselves to the predictability of the “500 mb omega stormtrack”, as opposed to many other 

interesting measures of synoptic variability.  

As discussed by Sardeshmukh et al. (2000) and many others (see Appendix), the signal-

to-noise ratio S for any quantity (local anomalies or anomaly fields; first or higher moments) has 

a simple monotonic relationship with the expected correlation skill ρn of n-member ensemble-

mean forecasts made using a “perfect” model.  Specifically, 

2 2 2 1 1/ 2/[( 1)( )]n S S S nρ −= + + .      (1) 

The thin curves in Figure 2 illustrate this relationship for a few values of n.  S is thus a useful 

measure of predictability.  The outermost ρ∞ curve shows how predictability is limited if S is 

small; this limitation cannot be overcome even using infinite-member ensembles of a perfect 

model.  The expected skill ρn using n-member ensembles is lower than ρ∞ , and model error (see 

Appendix) gives rise to even lower actual skill ρ. 

The modest estimates of S for the omega stormtrack in Fig. 1 therefore imply only modest 

stormtrack predictability associated with SST changes.  It is important to keep in mind, however, 

that these estimates are for one specific winter case using one particular AGCM.  It is unclear to 

what extent they are affected by the specifics of that case and/or model error.  Comparing the 

GCM’s ensemble-mean predicted stormtrack anomaly with the observed anomaly in JFM 1987 

does not settle the issue, because the GCM’s prediction is only the expected anomaly.  The 

prediction problem is inherently probabilistic, so the reliability of model-generated predictability 

estimates can only be assessed by examining prediction skill over a large number of cases.  To 

this end, one should ideally generate similar estimates of S for all the past 50+ winters for which 

observational upper-air verification data are available, using similar large 60-member ensemble 

runs of several other AGCMs to estimate the SST-forced stormtrack signal and noise in each 
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winter.  One could then make a scatter plot of the actual ρ against S, and determine to what extent 

the points fall along the ρ60 curve in Fig. 2.  To that extent, one would feel confident in the 

stormtrack predictability estimates derived from those AGCMs.  One could then consider the 

histogram of S values along the abscissa of Fig. 2, and use it to estimate, from the ρ60 curve, the 

mean expected skill, i.e. the mean predictability, as well as the range of the predictable skill 

variation around this mean predictability.  On the other hand, if the scatter points fall well below 

the ρ60 curve, then one would have to conclude that model error was compromising the 

predictability estimates.  To our knowledge it is not yet possible to make such scatter plots, 

because the necessary large ensemble runs with archived daily output have not yet been made at 

modeling centers.  We have nevertheless attempted in the final figure of this paper (Fig. 13) to 

make such a plot using smaller 12-member ensemble runs of two AGCMs for 1950-99.  It 

provides perhaps the best overall assessment to date of northern hemispheric stormtrack 

predictability, although it will be clear that much else remains to be done. 

The question of what ensemble sizes to use to make such assessments is particularly 

important, but is often glossed over.  Are 12 members enough?  One might think so from Fig. 2, 

given that the ρ12 curve is “close enough” to the ρ∞ curve.  The challenge in correctly estimating 

predictability, however, lies in correctly estimating S.  The thickened portions of the curves in 

Fig. 2 illustrate the 1-standard deviation uncertainty in estimates of S = 0.7 using n members.  

The large error bars on S for n = 12 (and even n = 25) translate into correspondingly large errors 

bars on the expected skill, i.e the predictability estimates.  Clearly, n must be sufficiently large 

that the sampling uncertainty in S is smaller than the actual variation of S from case to case.  

Otherwise, one loses the ability to determine and exploit the case-dependent variations of 

predictability.  Sampling errors in S can also make the expected skill appear spuriously 

inconsistent with the actual skill, and may thus cause them to be confused with model errors. 

Our principal means of making a general assessment of wintertime stormtrack 

predictability in this paper will be to compare the SST-forced variations of the stormtracks over 

the last half-century with the observed variations.  To this end, we will use two sets of relatively 
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small (9- to 13-member) ensemble runs for the last half century available from two modeling 

centers (NCAR and NCEP), with anomalous observed SSTs prescribed either globally or in the 

tropics alone, to estimate the SST-forced signal in each winter.  Since the stormtrack signals 

cannot be obtained directly from the archived monthly GCM output, we will diagnose them from 

the winter-mean 200 mb height signals using an empirical linear stormtrack model (STM) 

developed specifically for this purpose.  We will present the correlations ρ of these STM-

diagnosed stormtrack signals with the observed stormtrack anomalies, both as maps of the 

correlation of the SST-forced and observed anomaly values over 50 winters at each gridpoint, and 

as 50-winter timeseries of the pattern correlation of the SST-forced and observed anomaly fields 

in each winter over the Pacific-North American (PNA) and North Atlantic-Europe (NATL-EUR) 

sectors. 

In terms of our preceding discussion, we will thus use the actual skill ρ rather than 

directly estimating S to assess stormtrack predictability.  It is clear from Fig. 2 that using ~12 

member ensembles is inadequate for estimating predictability in individual winters at individual 

gridpoints.  However, the error bars on 50-winter correlations at individual grid points are much 

smaller, and are also smaller in individual winters for pattern correlations over the relatively large 

PNA and NATL-EUR domains with several spatial degrees of freedom.  This will justify our 

presenting the maps of local correlations and the timeseries of pattern correlations discussed 

above.  The latter, in comparison with the timeseries of tropical SST indices, will help us assess 

the case-dependent variations of stormtrack predictability.  

Our main interest in this paper is in extracting the predictable component of the 

stormtrack variations.  The words “predictable” and “SST-forced” can be used almost 

interchangeably for interannual stormtrack variations, given the large influence of predictable 

interannual tropical SST variations in forcing them.  Several studies have also shown substantial 

decadal stormtrack variability and trends over the last 50 to 100 years (e.g. Hurrell and van Loon 

1997, WASA Group 1998, Graham and Diaz 2001, Chang and Fu 2002, 2003, Gulev et al. 2002, 

Harnik and Chang 2003).  The decadal variations of the omega stormtrack, with its more direct 
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link to precipitation variations, have not been previously studied, and the degree to which they 

are SST-forced has also not been addressed.  Acknowledging that the existence of an SST-forced 

component does not necessarily imply stormtrack predictability on decadal scales, we will 

nevertheless also present correlations of 5-winter averages of the SST-forced and observed 

stormtrack anomalies, and explore to what extent they are associated with anomalous 5-winter 

average tropical SSTs. 

The paper is organized as follows.  The data and model integrations are discussed in 

section 2. In section 3, the linear STM is developed and tested for its ability to reproduce the 

NCEP AGCM’s (60-member) SST-forced stormtrack signals in JFM 1987 and 1989, given only 

the AGCM’s ensemble-mean 200 mb height signals in those winters.  In section 4, the STM is 

used to diagnose the SST-forced stormtrack signals in 1950-1999, given the NCEP and NCAR 

AGCMs’ ensemble-mean 200 mb height responses to (a) observed Global SST forcing, and (b) 

observed Tropical SST forcing.  The AGCMs’ skill in simulating the observed stormtrack 

anomalies is then evaluated through the correlation measures discussed above.  This average skill 

is compared with that expected from Eq (1) for the 1987 and 1989 events to illustrate the case-

dependence of expected forecast skill.  In section 5, the STM is used to address the important 

issue of decadal variations of stormtrack activity.  In section 6, we show that the actual AGCM 

skill in predicting stormtracks is close to the expected skill over the Pacific-North American 

sector, but a substantial systematic error is present over the North Atlantic-European sector.  A 

discussion and concluding remarks follow in section 7. 

 

2. Data. 

NCEP and NCAR AGCM simulation data, Hadley Centre SST data, and NCEP-NCAR 

reanalysis data are used in this study.  The NCEP model used is the MRF9, identical to that used 

by Kumar et al. (1996), Chen and van den Dool (1997), Sardeshmukh et al. (2000), and Compo 

et al. (2001).  The model has a spatial discretization of T40 in the horizontal (about 3o lat by 3o 

lon) and 18 sigma (normalized pressure) levels in the vertical.  Kanamitsu et al. (1991) describe 
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the NCEP MRF model in detail.  The several sets of MRF9 integrations used are listed in Table 1.  

The first set is the same as made by Sardeshmukh et al. 2000 and Compo et al. 2001.  Large 

ensembles of seasonal integrations were made with observed monthly global climatological JFM 

SSTs (90 members) and observed monthly global SSTs for JFM 1987 (60 members) and JFM 

1989 (60 members).  The second set was made with observed monthly global climatological JFM 

SSTs specified in all locations except the Nino4 region (5oN - 5oS, 160oE – 150oW).  As 

described in Table 1, we have made a total of 360 integrations of the MRF9 with SST anomalies 

in the Nino4 area of ±1, ±3, and ±5oC.  The complete collection of both sets of MRF9 integrations 

available at twice-daily resolution is 570 members.  Anomalies were derived by removing a least 

squares fit to the first three annual harmonics of the daily-averaged climatological-SST ensemble. 

We also make use of two sets of AMIP-style AGCM integrations at monthly resolution, 

one from the MRF9 and the other from the NCAR CCM3.0 (Table 1).  A 13-member ensemble 

of the MRF9 was integrated from 1950-1994 with the observed monthly SSTs specified globally 

(commonly referred to as GOGA).  A 9-member ensemble was also integrated with the observed 

monthly tropical Pacific SSTs specified and climatological SSTs specified elsewhere (POGA).  

The second set of integrations comes from the NCAR CCM3.0.  Kiehl et al. (1998) describe the 

CCM3.0 model in detail.  A 12-member GOGA ensemble of CCM3.0 was integrated from 1950-

1999.  An 11-member ensemble of CCM3.0 was integrated from 1950-1999 with the observed 

monthly tropical (30oN-30oS) SSTs specified and climatological SSTs specified elsewhere 

(TOGA).  Monthly anomalies were computed with respect to each model ensemble 1950-79 

mean separately for the POGA, TOGA, and two GOGA integrations. 

Analyzed height and vertical velocity fields were obtained from 50 years (1950-1999) of 

NCEP-NCAR reanalyses (Kistler et al. 1999) at twice-daily resolution.  SST indices for Nino3 

(5°N-5°S, 150°W-90°W) and Nino4 regions were constructed from the monthly Hadley Centre 

Sea Ice and Sea Surface Temperature (HadISST) dataset (Rayner et al. 2003).  Anomalies of the 

reanalysis and HadISST data were computed by removing a least-squares fit to the first three 

annual harmonics of the 1950-79 data. 
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All AGCM and reanalysis anomaly fields were first smoothed to triangular truncation 31 

using the spectral smoothing filter of Sardeshmukh and Hoskins (1984, hereafter SH).  From the 

twice-daily data, the Fourier power spectrum of JFM 90-day anomaly segments was computed 

for each ensemble member (or each calendar year for the reanalyses) at every grid point.  The 2 

to 6.9 day band was summed over all 33 frequencies present to form the 2-7 day bandpass 

filtered variance.  The variance fields were then spectrally smoothed to triangular truncation 12 

using the SH filter to facilitate comparison with other studies using similar truncations (Whitaker 

and Sardeshmukh 1998, Chang and Fu 2002, 2003). 

The smoothed 2-7 day 500 mb vertical velocity variance fields are referred to as the 

“omega stormtracks” and “stormtracks” where there is no possibility of confusion.  Our spatial 

smoothing retains about 70% of the original standard deviation, but the pattern is preserved.  The 

pattern correlation between the smoothed and unsmoothed omega stormtracks is 0.98. 

Seasonal omega stormtrack anomaly fields were constructed by removing the 1950-79 

JFM average from each JFM for the reanalysis data. The JFM mean of the NCEP MRF9 

climatological SST ensemble mean was removed from each ensemble member of all 570 MRF9 

experiments available at twice-daily resolution. 

Empirical orthogonal functions (EOFs) of the 570 JFM stormtrack and 200 mb height 

anomaly fields were computed over the northern hemisphere (20-90°N), the western part of the 

northern hemisphere, the Pacific-North American (PNA) region (180-60°W, 20-90°N), and the 

North-Atlantic European region (60°W-60°E, 20-90°N) using the covariance matrix area-

weighted by the cosine of latitude.  From the EOFs, the equivalent spatial degrees of freedom 

(esdof) for all four domains were calculated using the method of Bretherton et al. (1999). 

To orient the reader to the climatological pattern and interannual variance of the omega 

stormtracks compared to the 500 mb height stormtracks, the top panels of Fig. 3 show the 

standard deviation of 1950-79 2-7 day bandpass filtered 500 mb (left) omega and (right) height.  

The bottom panels show the interannual standard deviation of each stormtrack variable over 

1950-99.  The omega stormtracks shown in Fig. 3 (top left) are in excellent agreement with those 
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computed by Hoskins and Hodges (2002) using ECMWF data for 1979-2000.  This agreement 

supports the findings of Compo et al. (2001) that the synoptic timescale vertical velocity variance 

is similar between the various observational estimates in the northern hemisphere extratropics.  

As illustrated in Fig. 3, the omega stormtracks are also particularly useful as they capture the 

well-known maxima in the Pacific and Atlantic and have a well-defined Mediterranean maximum 

seen in cyclone feature-tracking studies that is not found in climatologies of several other 

synoptically bandpass filtered variables such as 500 mb height (Hoskins and Hodges 2002).   

As in Compo et al. (2001), we present anomalous stormtrack maps as variance 

differences rather than ratios to facilitate comparison with our previous work and to allow direct 

comparisons between predicted and observed stormtrack anomalies.  Specifically, we present 

maps of 

( ) 1/ 22 2 2 2sgn i o i oσ σ σ σ σ∆ = − × − ,    (2) 

where i indicates the year and o indicates climatological (or neutral) SST conditions.  This 

quantity has the same units as the seasonal mean anomalies, is of comparable magnitude, and 

preserves the sign of the variance difference.  The patterns of ∆σ can also be directly interpreted 

and diagnosed in terms of the dynamical difference equations for second moment quantities.  

3. Empirical Stormtrack model 

a. Description of empirical storm track model 

Understanding the connection between a background flow and the behavior of individual 

synoptic eddies evolving on it has long been a core problem in dynamical meteorology.  The shift 

of focus to the link between a mean flow and the overall statistics of the synoptic eddies 

associated with it – “stormtracks” – is a relatively recent development (e.g., Blackmon et al. 

1977; Lau 1988; Wallace et al. 1988; Farrell and Iannou 1994, 1995; Branstator 1995; Whitaker 

and Sardeshmukh 1998, Zhang and Held 1999).  Whitaker and Sardeshmukh (1998) were able to 

simulate many aspects of the observed climatological winter-mean Pacific and Atlantic 

stormtracks given knowledge only of the climatological winter-mean flow at two levels in the 

upper and lower troposphere.  Encouraged by this, they put their model to a harder test: to predict 
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the anomalous stormtracks for individual winters given the anomalous winter mean flow.  

Overall, Whitaker and Sardeshmukh had only limited skill at this, and the question remains 

whether this is due to nonlinearity of the mean-flow stormtrack relationship, the relative 

simplicity of the model, noise present in an individual winter mean flow and stormtracks, or 

some other factor. 

Whitaker and Sardeshmukh’s “dynamical stormtrack model” consists of stochastically 

perturbing a 2-level quasi-geostrophic model linearized about a specified mean flow to deduce 

the stormtracks associated with that flow.  One can also think of constructing an “empirical 

stormtrack model”, that uses a multiple linear regression operator estimated from data to predict 

the anomalous stormtracks associated with an anomalous mean flow.  The prediction equation 

may formally be written as  

ε= +y xGGGG        (3) 

where GGGG is the linear regression operator, x (the predictor) is the anomalous mean flow, y (the 

predictand) is the anomalous stormtrack field, and ε is the error.  For the northern hemisphere 

winter (January-March), we have constructed such a model in a truncated EOF space, with x as 

the anomalous mean 200 mb height and y as the anomalous omega stormtracks using the 570 

NCEP AGCM integrations listed in Table 1. 

The optimal GGGG was determined by cross-validation, sequentially removing 30 members of 

the set of 570 at a time, computing GGGG from the remaining 540, and then predicting the stormtrack 

anomalies in the excluded 30.  All EOF truncations from 2 to 60 for 200 mb height and 2 to 70 

for stormtrack anomalies were computed.  The cross-validated root-mean-square error and 

average pattern correlation as a function of truncation are shown in Fig. 4.  The cross-validated 

skill of the STM is not extremely sensitive to the choice of truncation.  As such, we have chosen 

the truncation with the largest average pattern correlation: 40 EOFs of the 200 mb height field 

and 51 EOFs of the stormtrack anomaly field. In EOF space, GGGG is then a 40 x 51 matrix. 
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b. Validation of STM 

To establish the utility of a linear storm track model for diagnosing predictable stormtrack 

anomalies, one first has to demonstrate that it is accurate enough to predict a nonlinear GCM's 

ensemble-mean SST-forced stormtrack signal given the GCM's ensemble-mean seasonal flow.  

The ability of an empirical stormtrack model trained on an AGCM’s noise, i.e. on unpredictable 

stormtrack and mean-flow variations, to predict SST-forced stormtrack variations cannot be 

inferred directly from Fig. 4, because (1) to the extent that the SST-forced mean-flow signal is 

weaker than the noise, one is putting the stormtrack model to an even harder test than in Fig. 4; 

and (2) the SST-forced mean-flow signal for an individual case may have features that are not 

captured in the truncated EOF space in which GGGG operates.  Fig. 5 shows that the STM is 

nevertheless successful at predicting the principal elements of the AGCM’s ensemble-mean 

northern hemisphere stormtrack anomaly field in JFM 1987 given the AGCM’s ensemble-mean 

seasonal mean flow anomaly.  For this test, the EOFs and GGGG itself were re-derived excluding the 

60 members of the 1987 AGCM integrations.  Over the hemisphere, the pattern correlation 

between the STM AGCM stormtrack anomalies and the fully nonlinear AGCM ensemble mean 

stormtrack anomalies is 0.9. 

The diagnostic skill of the STM is also of interest.  Is an empirical model trained on 

AGCM statistics relevant to the observations?  As shown in the left hand panels of Fig. 5, this 

simple STM has considerable skill in diagnosing the pattern and amplitude of the observed 

anomalous winter-mean stormtracks of the 1987 El Nino winter in the NCEP Reanalysis dataset, 

given the observed anomalous winter-mean flow over the hemisphere.  While there is an error of 

sign in the western Pacific, over the western part of the hemisphere, the pattern correlation is 0.7. 

Fig. 6 shows similarly skillful results for the observed and AGCM predicted stormtrack 

anomalies of the 1989 La Nina.  Here also, the EOFs and STM have been re-derived excluding all 

60 members of the 1989 AGCM integrations.  In the right hand panels, over the northern 

hemisphere, the pattern correlation between the STM-diagnosed AGCM stormtrack anomalies 

and the fully nonlinear AGCM ensemble-mean stormtrack anomalies is the same as for the 1987 
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case (0.9).  The diagnostic skill seen in the left hand panels is also high, with pattern correlations 

over the hemisphere and its western part of 0.5 and 0.8, respectively. 

Our STM is complementary to those recently developed by Chang and Fu (2003) and 

Peng et al. (2003).  Our approach is to construct the STM from AGCM statistics to diagnose 

stormtrack anomalies from independent AGCM and observational mean-flow anomalies.  Chang 

and Fu built a CCA between the anomalous mean flow and eddy statistics using the more recent 

part of the NCEP reanalysis dataset to assess the quality and decadal variability of eddy statistics 

in the earlier part.  While successful in many respects, the CCA stormtrack model of Chang and 

Fu had a substantial problem with the amplitude of the diagnosed stormtrack anomalies.  Peng et 

al. (2003) used multiple linear regression on an NCEP AGCM dataset to construct a linear 

operator relating monthly mean geopotential height to synoptic eddy vorticity fluxes for 

diagnosing the mean-flow/eddy feedback in that AGCM.  Neither the stormtrack model of Peng 

et al. nor the STM used here (Figs. 5 and 6) have the amplitude problem of Chang and Fu, which 

probably arises from sample size limitations of the observed record. 

For the remainder of the paper, the STM used is that derived from all 570 members of the 

twice-daily MRF9 integrations (Table 1). 

 

4. Skill for predicting interannual stormtrack variations. 

Having demonstrated that the STM can successfully diagnose both observed and AGCM 

ensemble-mean stormtrack anomalies in specific cases, we now use it to estimate the northern 

hemisphere stormtrack anomalies for the last 50 years from observations and 4 different sets of 

AGCM integrations that are independent of it.  This will allow us to evaluate the diagnostic skill 

of the STM and to estimate the potential skill of predicting interannual stormtrack variations. 

Fig. 7 shows, at each northern hemispheric gridpoint, the temporal anomaly correlation 

between the observed stormtrack anomalies and the STM-diagnosed stormtrack anomalies.  The 

contours begin at the local 5% significance level of 0.25 and are plotted every 0.15 thereafter.  In 

the top panel, the observed 200 mb height anomalies are given to the STM to diagnose the 
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stormtrack anomalies.  In all other panels, AGCM ensemble mean 200 mb height anomalies are 

given to the STM to produce AGCM-predicted stormtrack anomalies.  As suggested in Figs. 5 

and 6, the top panel of Fig. 7 shows that the diagnostic skill of the STM, given the mean flow at 

only the 200mb level, is high over a large portion of the northern hemisphere, with a temporal 

correlation above 0.7 in several large areas.  The failure of the STM over the western Pacific and 

south Asia, seen in Figs. 5 and 6, is also evident here.  However, the STM accurately diagnoses 

most of the regions of largest interannual stormtrack variability (Fig. 3). 

The bottom four panels of Fig. 7 show the actual skill in predicting interannual stormtrack 

anomalies.  The stormtrack simulation skill has been estimated separately using the STM on 

ensemble mean 200 mb height anomalies from (left panels) GOGA integrations and (right 

panels) TOGA and POGA integrations using (middle panels) the NCAR CCM3.0 and (bottom 

panels) the NCEP MRF9 integrations described in Table 1.  The correlations are very similar in 

the GOGA, TOGA, and POGA integrations, although a tendency for lower values in the latter 

two is apparent over the Gulf of Alaska and Europe.  The results for the two AGCMs are 

generally consistent.  The Pacific-only SST forcing contains almost all of the skill of the other 

integrations, providing evidence that most of the predictable stormtrack anomalies are forced by 

tropical Pacific SST anomalies. 

To further characterize the interannual stormtrack variations, we examine the pattern 

correlation between observed and predicted stormtrack anomalies for each JFM season of 1950-

99 in Fig. 8.  As the diagnostic skill of the STM is high over certain parts of the hemisphere, the 

skill for simulating the pattern of stormtrack anomalies is calculated only for the Pacific-North 

American (PNA) and the North-Atlantic European (NATL-EUR) sectors.  Fig. 8(c) shows the 

pattern correlations over the PNA sector between the observed stormtrack anomaly and that 

diagnosed from the STM using (black bars) the observed 200mb height anomaly, (green bars) 

GOGA CCM3.0, and (blue bars) TOGA CCM3.0.  Results for the NCEP MRF9 are similar.  The 

skill over the NATL-EUR region is shown in Fig. 8(d).  The high correlations seen using the 
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observed 200mb height field show that the diagnostic skill of the STM is substantial in both 

regions. 

Fig. 8 gives an idea of the case-dependence of stormtrack simulation skill.  The GOGA 

and TOGA AGCM integrations both simulate the stormtrack anomalies with significant skill in 

many years over the PNA and NATL-EUR sectors.  The case-to-case variations of skill are large, 

and not entirely attributable to sampling fluctuations.  This skill is tested against the null 

hypothesis that the integrations are independent and have no relationship to the observed 

anomalies.  In a monte carlo procedure using resampling with replacement, 5000 pattern 

correlations for the PNA sector and the NATL-EUR sector are computed between the observed 

stormtrack anomalies and random pairings of GOGA and TOGA predicted stormtrack anomalies.  

In a given monte carlo realization, both independently selected GOGA and TOGA maps are 

correlated with the same randomly-selected observed map.  In only 5% of the monte carlo 

realizations did pairs of the two integrations simultaneously have pattern correlations exceeding 

~0.2, shown by the thin horizontal line in Fig. 8(c) and (d).  From sampling, over a 50-year 

period one would expect 3 pairs to exceed the significance threshold of ~0.2 simultaneously.  In 

Fig. 8, 26 pairs of GOGA and TOGA integrations simultaneously exceed the significance test in 

the PNA sector, and 12 pairs exceed the threshold in the NATL-EUR sector.  While 3 is the 

expected value, this is not the number of years that one would find in 5% or fewer of random sets 

of 50 years.  That number should be higher. 

Therefore, we have performed another, and much harder, test to determine the probability 

distribution for the number of pairs in a 50-yr set simultaneously exceeding the individual-year 

significance threshold of ~0.2.  Using the same monte carlo procedure, but now with 5000 50-yr 

sets, we determine the number of years that both TOGA and GOGA correlations simultaneously 

exceed the threshold in each 50-yr set.  From this, we find that over the PNA and NATL-EUR 

sectors, respectively, 11 and 9 years out of 50 randomly pass the threshold in 5% (250) of the 

random 50-yr sets.  The CCM3.0 skills in Fig. 8 over the PNA and NATL-EUR regions are 

significant more often than expected from this test. 
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The timeseries in Fig. 8 suggest that tropical SST variations in the equatorial Pacific play 

a dominant role in the stormtrack skill over both the PNA and the NATL-EUR sectors.  The 

AGCM has significant skill over the PNA sector in 26 winters.  This result is inconsistent with 

the idea that predictable signals occur solely during moderate to strong ENSO events.  Fig. 8(e) 

shows timeseries of winter-mean anomalies of SST in the Nino3 and Nino4 regions.  PNA 

stormtrack anomalies are skillfully simulated in several years that are not usually classified as 

moderate to strong El Nino or La Nina events (e.g. NOAA Climate Prediction Center’s subjective 

classification scheme at http://www.cpc.noaa.gov).  For example, in JFM 1970 and 1991 both 

CCM3.0 runs have large skill, yet CPC considers both weak El Nino events. 

Recently, Barsugli and Sardeshmukh (2002) presented evidence that the extratropical 

atmosphere may be more sensitive to SST anomalies in the Nino4 region than elsewhere in the 

tropical Indo-Pacific.  In their study, the atmospheric response to a Nino4 anomaly is nearly twice 

that of the same magnitude Nino3 anomaly.  For the stormtrack skill shown in Fig. 8, the 

dependence on Nino3 and Nino4 is quantified in Table 2.  The pattern correlations are averaged 

based on the simultaneous magnitude of Nino3 and Nino4.  Table 2 shows that the largest 

average stormtrack skill in both the PNA sector and the NATL-EUR sectors is obtained when 

both Nino3 and Nino4 have large amplitude.  Interestingly, significant skill is also found in the 

PNA sector when Nino4 has large amplitude but Nino3 does not.  These 9 cases represent an 

untapped set of potentially predictable responses to equatorial Pacific SSTA that may be captured 

by AGCMs but are hidden by stratifying data by Nino3 or Nino3.4 alone. 

The results for the NATL-EUR sector in Table 2 are also interesting, pointing to some 

dependence on both Nino3 and Nino4 anomalies.  The diagnostic skill of the STM is quite high 

throughout the record, consistent with the top panel of Fig. 7.  The generally low simulation skill 

over the NATL-EUR sector supports the finding of other studies of AGCM skill predicting eddy 

variances in this region (e.g. Pavan and Doblas-Reyes 2000).  The moderate skill when both 

Nino3 and Nino4 are large may be unexpected and suggests a sensitivity to the details of the SST 

forcing not revealed when stratifying skill by only one index of ENSO. 
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Fig. 8 and Table 2 suggest that the skill in forecasting stormtrack anomalies will depend 

on the details of the SST forcing.  Such case dependence is not very useful unless the variations 

in skill can be anticipated and issued as part of the forecast.  Fig. 9 suggests that they can. 

Fig. 9 shows that the expected forecast skill for stormtrack anomalies can be significantly 

different from ENSO event to event.  The expected skill ρ60 for (a) JFM 1987 and (b) JFM 1989 

stormtrack anomalies is computed directly from Eq (1) using the AGCM predicted signal to noise 

ratio S from each 60 member ensemble.  The expected skill can be significantly different between 

El Nino and La Nina.  Note, for example, that the expected stormtrack prediction skill over 

northern Europe is greater than 0.55 for the 1987 case but less than 0.25 in the 1989 case.  All 

differences of ~0.3 or more are significant above the 5% level, assuming S is distributed as a 

student-t statistic.  It is also interesting to observe that the overall skill is expected to be higher 

during the La Nina case than the El Nino case over many regions not usually associated with an 

ENSO effect.  The skill is greater for the 1989 case over the Atlantic, Africa, the Middle East, 

and South Asia.  Examining only averages of skill will mask these substantial variations from 

case to case. 

Comparing the expected skill in Fig. 9 for two particular forcing fields with the average 

actual skill in Fig. 7 from 50 different forcing fields further illustrates the case-dependence of 

skill.  Given that Fig. 7 does not make the “perfect model” assumption, it is not surprising that its 

actual skill is generally lower than the expected skill in Fig. 9.  What is perhaps more surprising 

is that in some regions (such as the Gulf of Mexico) the average actual skill is actually higher 

than the expected skill in Fig. 9.  This again underscores the point that once one goes beyond the 

broad-brush similarities of Figs. 7 and 9, substantial regional differences become apparent.   They 

highlight the case-to-case and GCM dependence of stormtrack predictability, with important 

implications for the local precipitation.  We return to the important issue of whether the actual 

skill is related to the expected skill in section 6. 
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5. Skill for predicting decadal stormtrack variations. 

Perhaps one can push an empirical linear stormtrack model harder still, and ask it to 

diagnose the decadal variability and 50-year stormtrack trend (discussed, e.g., in Hurrell and van 

Loon 1997; Chang and Fu 2002) given the observed JFM-mean flow.  Towards this end, Chang 

and Fu (2003) had some success with their CCA stormtrack model derived from observed 

statistics, though the amplitude of the variations was weaker than observed.  One would like to 

know whether the STM derived from AGCM seasonal anomalies is also relevant to the observed 

decadal fluctuations.  Further, one would like to quantify how much of the decadal stormtrack 

variations are related to the SST forcing.  These issues are addressed below. 

a. 5-yr averages 

The top panel of Fig. 10, similar to Fig. 7, shows the local temporal correlation between 

the observed 5-winter average stormtrack anomalies and those diagnosed by the STM given the 

5-winter average 200 mb height anomaly.  Note that the contouring now begins at the local 5% 

significance level of 0.4.  The hemispheric coverage of significant diagnostic skill is much less 

than for the seasonal stormtrack.  Most of the North Atlantic and Europe’s decadal variations are 

accurately diagnosed with correlations over 0.85 in several regions.  The STM also successfully 

diagnoses the 5-winter average stormtrack variations over the eastern Pacific, but not over large 

portions of western North America. 

The bottom four panels of Fig. 10 suggest the degree of SST forcing of decadal 

stormtrack variations.  They show the local temporal correlation between the observed 5-winter 

average stormtrack anomalies and those of the four AGCM integrations applying the STM to the 

5-winter average ensemble-mean 200mb height anomalies.  These skill maps are very similar to 

each other and largely consistent with the interannual skill in Fig. 7 but with decreased skill over 

the southern US and increased skill over northern Canada.  A notable difference is the presence 

of significant skill in the southern US and western Atlantic in the CCM3.0 panels compared to 

the MRF9.  Livezey et al. (1997) demonstrated that the MRF9 has substantial difficulty 

reproducing observed upper-level features in the North Atlantic, and this would adversely affect 
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our diagnosed stormtracks.  The MRF9’s poorer showing over the North Atlantic is also 

somewhat evident in Fig 7, but a known mass-leak in upper-level fields (Livezey et al. 1997) may 

further degrade performance for decadal variability in this region. 

Time-varying pattern correlations between the simulated and observed 5-winter average 

stormtrack anomalies over the PNA and NATL-EUR sectors are shown in Fig. 11 using the 

CCM3.0 GOGA and TOGA integrations.  Also shown are the standardized 5-winter-average JFM 

values for Nino3 and Nino4 SST anomalies.  Over the PNA sector, the diagnostic skill of the 

STM is high for the last 20 years of the record and consistently low in the mid-1960s.  For this 

region, the GOGA and TOGA CCM3.0 stormtracks have a similar variation in skill, suggesting 

that the 5-winter averages for much of the record are being forced by SSTs in the tropics.  The 

high skill over the PNA sector appears to correspond with the periods of large magnitude in the 

5-winter averages of Nino3 and Nino4, leading to the speculation that the decadal variability in 

ENSO itself is driving most of this skill variation.  In contrast, over the NATL-EUR sector, the 

diagnostic skill is relatively high throughout the record, while the CCM3.0 integrations have low 

skill from the mid 1960s to mid 1980s. 

Fig. 11 suggests that the decadal stormtrack anomalies over both the PNA and NATL-

EUR sectors are SST-forced in several epochs.  However, over the PNA sector, the skill is 

statistically significant for the record, while over the NATL-EUR sector it is not.  The AGCM 

skill is compared to the null hypothesis that 5-winter averages of both runs are independent and 

have no relationship to the observed anomalies.  A similar monte carlo procedure to that 

described for Fig. 8 is performed with 5000 resamplings with replacement of the observed and 

predicted 5-winter average storm tracks.  From it, we find only 5% of both integrations exceed 

pattern correlations of ~0.3, shown by the thin horizontal line in Fig. 11(c) and (d).  In a 46-yr 

sample of 5-winter averages, an additional 5000 resamplings showed that only 14 and 10 years 

would randomly pass the threshold more than 5% of the time in the PNA and NATL-EUR 

sectors, respectively.  The GOGA and TOGA CCM3.0 skills in Fig.11 simultaneously exceed the 

threshold 27 times over the PNA sector but only 4 times over the NATL-EUR sector. 
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b. 50-yr trend 

Our results for winter and 5-winter averages motivate us to use the AGCM data to 

examine the role of SST-forcing in even longer-term stormtrack variations.  There has been some 

debate in the literature about the observed stormtrack changes over the last 50 years (e.g. Hurrell 

and van Loon 1997, Graham and Diaz 2001, Chang and Fu 2002, 2003, Harnik and Chang 

2003).  The long-term omega stormtrack variations and their relationship to previously studied 

stormtrack variables have not been addressed.  Fig. 12 examines the 50-yr trend in the omega 

stormtracks and its relationship with the global SST forcing. 

As the STM appears to have low diagnostic skill over most of the eastern part of the 

northern hemisphere (Fig. 10), our discussion of stormtrack trends focuses on the western half.  

The top panels of Fig. 12 show the linear 50-yr trend of JFM 200 mb height anomalies from (top 

left) NCEP reanalyses and (top right) CCM3.0 forced with global observed SSTs.  Hoerling et al. 

(2001) discuss the pattern similarity of these two fields (pattern correlation of 0.86).  The 

stormtrack trends diagnosed by the STM from these fields are shown in the middle panels.  Their 

pattern correlation is 0.77 (significant above the 5% level assuming 8.3 esdof).  The stormtrack 

trend calculated directly from the NCEP reanalyses is shown in the bottom panel.  Both STM-

estimated trends correlate with the observed trend higher than 0.6 (significant above the 10% 

level).  This correspondence is less than found by Chang and Fu (2003) using CCA to diagnose 

the 300mb meridional wind stormtrack; in that study the predicted and observed trends correlated 

at 0.85 over the hemisphere. 

Our STM-diagnosed reanalysis stormtrack trend in Fig. 12 is similar to several recent 

studies of long-term Pacific and Atlantic stormtrack variability in near-surface variables.  Over 

the Pacific, the pattern in Fig. 12 is consistent with the trend pattern of 2 to 6 day sea level 

pressure variance analyzed by Graham and Diaz (2001), with decreasing variance over Alaska 

and western North America and increasing variance over the central north Pacific.  Our STM-

estimated trend pattern over western North America is also consistent with the decadal variability 

in 1000mb height found by Chang and Fu (2003). 
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Over the Atlantic sector, we find good agreement among the various trend estimates.  The 

STM diagnosed stormtrack trends in Fig. 12 are very similar to those seen in the reanalysis 

stormtrack trends.  They are also consistent with the 1000mb height stormtrack trends calculated 

by Gulev et al. (2002) and the 1000mb height decadal variability shown by Chang and Fu (2003).   

Over western North America, there is substantial disagreement between the diagnosed 

and reanalysis storm trends in Fig. 12.  Given the relatively good correspondence between lower 

tropospheric variance trends in previous studies and the STM-diagnosed omega stormtrack trends 

in this region, we concur with Harnik and Chang (2003) that the sign of the trend in upper-air 

stormtrack variables may be in error over western North America and the Pacific, with a possible 

cause the 1973 change in radiosonde reporting procedures (Kistler et al. 2001, Chang and Fu 

2003).  Another discontinuity is the introduction of satellite data into the NCEP reanalyses 

starting in 1979 (Kisler et al. 2001) whose effect on the analyzed synoptic variances has not been 

quantified. 

In contrast, over the Atlantic-European sector, Harnik and Chang (2003) found that 300 

mb meridional wind stormtrack trends derived from radiosondes were closer to those from the 

reanalysis in this region.  Our results support the conclusion that the NCEP reanalysis upper-level 

stormtrack trends are more reliable over the Atlantic and eastern North America than over 

western North America or the Pacific. 

The greater similarity of the CCM3.0’s stormtrack trend with the STM-diagnosed rather 

than the reanalysis trend shown in Fig. 12 lends further evidence to support these conclusions.  

However, over the Atlantic, the CCM’s stormtrack trend is shifted too far to the east, consistent 

with its eastward displacement of the observed high.  The trend is also much weaker, consistent 

with the weaker amplitude of its height trend.  The overall low amplitude of the height trend 

using global SST forcing, and the even lower amplitude using tropical SST forcing (see Hoerling 

et al. 2001 Fig. 3) suggests that less than half of the observed trend over the North Atlantic is 

consistent with the SST forcing, based on CCM3.0.  This result may depend significantly on the 

AGCM used and needs to be investigated with other models. 
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6. Forecasting the forecast skill 

The finding of significant variations of the expected skill in forecasting stormtrack 

anomalies is one of the central results of the present study.  The case-to-case variations seen in 

Figs. 8 and 9 raise the possibility that there may be useful skill for an individual event different 

from the composite-based approach to estimating expected skill (e.g. Rowell 1998, Peng et al. 

2000, Kumar et al. 2003).  Such case-to-case variations in forecast skill are not helpful unless 

they also can be predicted (Anderson et al. 1999).  Fig. 13 demonstrates that they can. 

The thick curve in Fig. 13 shows the expected skill for a 12-member ensemble, assuming 

a perfect model, as a function of the signal to noise ratio S (Eq 1), reproduced from Fig. 2.  One 

can also calculate the expected skill of a model with a time-varying systematic error 

(Sardeshmukh et al. 2000).  As discussed in the Appendix, Sardeshmukh et al. determined that 

when a multivariate ensemble forecasting system has a systematic error, the expected skill is 

given by 

2 2 2 2 1 1/ 2/[( 1)( )] ,n eS S S S nρ −= + + +       (4) 

where Se is the ratio of the ensemble mean systematic error to the ensemble spread.  The dotted 

curve shows the expected skill for a 12 member ensemble when a systematic error Se  = 2S is 

present in the forecast (Eq 4).  We have estimated separate S-values for every JFM of each of the 

four NCEP and NCAR AMIP-style integrations using the STM-diagnosed ensemble-mean 

stormtrack anomaly as the signal and combining 210 ensemble members from the 1987, 1989, 

and climatological MRF9 integrations (Table 1), with their respective ensemble means removed, 

to form the noise.  The same spread is thus used for all S calculations.  The symbols in Fig. 13 

show the actual average simulation skill of the stormtrack anomalies.  Averages are taken over 

similar S values for the PNA sector (filled circles) and the NATL-EUR sector (diamonds).   

The stormtrack skill in Fig. 13 is consistent with the estimated S values in the Pacific 

sector but not in the Atlantic sector.  A similar result is obtained for 5-yr averages but with larger 

error bars (not shown).  These results are robust whether the tropically-forced runs are included 

or excluded (not shown).  These results are also robust when the NCEP MRF9 and NCAR 
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CCM3.0 are considered separately (not shown).  The systematic error over the Atlantic sector is 

on the order of twice the AGCMs’ predicted signals.  Because the stormtrack signals are obtained 

from the STM, the error must lie either in the STM or the specified 200 mb height anomaly.  We 

believe the error is in the latter. The diagnostic skill of the STM is quite high over the Atlantic 

sector (Figs. 7 and 8) and is nearly the same on average over the PNA and NATL-EUR regions 

(Table 2).  The STM also successfully recovers MRF9 ensemble-mean stormtrack anomalies  

over the Atlantic given only ensemble-mean 200 mb height anomalies in the 1987 (Fig. 5) and 

1989 (Fig. 6) cases.  These results demonstrate that both the MRF9 and CCM3.0 have a 

substantial systematic error over the North Atlantic-European sector in the 200mb height 

response to specified global and tropical SSTs.  

Several previous studies have shown that many AGCMs have low skill predicting upper-

level circulation and precipitation anomalies over the North Atlantic-European sector (e.g. 

Livezey et al. 1997, Brankovic and Palmer 2000, Doblas-Reyes et al. 2000, Graham et al. 2000, 

Peng et al. 2000, Shukla et al. 2000).  The estimated S values in Fig. 13 and the expected skill 

shown in Fig. 9 suggest that, if the systematic error is correctable, the actual skill over the North-

Atlantic Europe sector could be much higher than found here for stormtrack anomalies and, by 

inference, for other related quantities such as winter-mean heights and precipitation.  Note that 

the systematic error diagnosed in Fig. 13 is not a constant that can be linearly removed, but is 

time-varying, making its correction much more difficult. 

 

7. Conclusions. 

Our study shows that there is indeed a predictable SST-forced stormtrack signal over 

much of the Northern Hemisphere in boreal winter, but one that may differ substantially from 

case to case and between El Nino and La Nina events.  The signal is modest, but has large 

implications for the prediction of seasonal precipitation.  The results further suggest that a 

predictable stormtrack signal may exist over the Pacific-North America sector in weak and even 

non-ENSO winters.  The signal is sufficiently robust that it can be predicted a priori, given only 
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the SSTs in the tropics.  Specifying extratropical SSTs in addition enhances the skill slightly.  

Decadal stormtrack variations are largely consistent with the tropical SST forcing, particularly in 

the second half of the record. 

These conclusions do not apply in the North Atlantic-European sector.  While a 

potentially predictable stormtrack signal may exist, a substantial systematic error has been 

diagnosed, on the order of twice the signal strength.  If the error is correctable, the expected skill 

calculations of Figs. 9 and 13 suggest that the potential skill for this region may be much higher 

than the actual skill found here.  

Our study has taken advantage of two relationships. First, the signal-to-noise ratio S and 

its related expected correlation skill ρn can be calculated for any multivariate quantity, for any 

forecasting situation.  S then serves as a useful simple measure of predictability. When S is small, 

the skill of deterministic ensemble-mean predictions is low, and can easily be compromised by 

model errors and the use of small ensembles.  With large ensembles and small model error, 

useful probabilistic predictions, especially of the altered risks of extreme anomalies, may still be 

possible, as stressed by Sardeshmukh et al. (2000).  

Second, as shown by the success of recent empirical STMs (Chang and Fu 2003) and our 

own calculation, the relationship between the observed mean-flow and observed extratropical 

stormtrack anomalies is essentially linear and lies in a low-dimensional space.  Our linear storm 

track model (STM) can reproduce a nonlinear GCM’s storm track response to ENSO forcing, 

given only the GCM’s 200 mb height response.  These results indicate room for improvement in 

dynamical stormtrack models’ simulation of the observed eddy variances, covariances, and 

fluxes. 

The two relationships together have been used to estimate the local and regional 

predictability of winter-mean and 5-winter-mean storm track anomalies.  The analysis of actual 

versus expected skill over the North-Atlantic European sector suggests that the poor skill seen in 

many studies of seasonal anomalies over the European sector may not represent an inherent 

predictability limit but rather a common systematic error that would be especially evident in 
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precipitation.  Over the PNA sector, the results of Fig. 13 imply that the time variation of the 

actual skill seen in Fig. 8 may be predicted.  An ensemble on the order of 128 members should be 

adequate to allow reliable estimation of S changes of 0.25 from winter to winter. 
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Appendix: Derivation of multivariate predictability as a function of the signal to noise ratio. 

One way to increase the value of climate predictions is to issue the expected skill of the 

forecast as part of the prediction.  van den Dool and Toth (1991) derived the expected value of a 

forecast’s correlation skill when predicting the ensemble mean anomaly of any univariate 

distribution using an infinite member ensemble.  Rowell (1998) extended van den Dool and 

Toth’s result to the use of a n-member ensemble forecast.  Kumar and Hoerling (2000) derived 

the results of Rowell (1998) for the specific case of forecasting the sign of the mean anomaly of a 

Gaussian distribution. 

Sardeshmukh et al. (2000) further developed the results of Rowell (1998) for a 

multivariate forecast that has errors.  They derived the expected skill for an ensemble forecasting 

system predicting any multivariate quantity that has defined first and second moments.  The 

forecasting system need not have a perfect model.  Following Sardeshmukh et al., consider a 
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multivariate distribution Pm(<x+xe>,C0m) that represents the altered model probability density 

function (PDF) of some quantity and P(<x>,C0) that is the true PDF of that quantity, such as 

winter stormtrack anomalies during an El Nino event.  Here <x> is the population mean anomaly 

state vector, <x+xe> is model’s population mean anomaly state vector, where <xe> equals the 

model’s error in predicting the population mean, C0 is the covariance matrix of the variations x′′′′ 

around <x>, and C0m  is the model’s covariance matrix of variations y′′′′ about <x+xe>.  Note that P 

and Pm can be any multivariate distributions that have defined first and second moments.  Also, 

note that none of the parameters of these distributions need necessarily be the same for El Nino 

and La Nina or even from case-to-case.  The PDF of ensemble mean forecasts issued from an n-

member ensemble with this model is Pm(<x+xe >,n-1 C0m).  Assume that a vector y is issued as 

the forecast, and the real atmosphere picks a vector x = <x> + x′′′′ from P as its stormtrack 

anomaly field.  The average anomaly correlation of the observed and predicted vectors is then  

 

            (A1) 

 

 

where we have assumed that 0e⋅ =x x .  The dot product here represents a general scalar 

product of the form T⋅ =x y x Wy , where W is any suitable positive-definite weight matrix.  Note 

that 1/ 2 1/ 2
0Tr′ ′  ⋅ =  x x W C W  and 1/ 2 1/ 2

0Tr m′ ′  ⋅ =  y y W C W .  The weight matrix W can be 

chosen to emphasize a particular gridpoint (as in Fig. 9), a linear combination of variables over a 

region (as in Fig. 13), or be set equal to identity to examine skill over the entire atmosphere. 

If we further assume that the model correctly reproduces the second moment, i.e., C0m= 

C0, then (A1) becomes (4):  

( )( ) 1/ 2
2 2 2 2 11 ,n eS S S S nρ − = + + +       (A2) 

where 
1/ 2

S ′ ′=  ⋅ ⋅  x x x x  and 
1/ 2

e e eS ′ ′=  ⋅ ⋅  x x x x . For a “perfect” model, both 

<xe>=0 and C0m= C0, and (A1) leads to (1): 
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( )

( )( )

1/ 2

1/ 2
1

n

e e n

ρ

−

= ⋅ ⋅ ⋅

= ⋅

 ′ ′ ′ ′÷ ⋅ + ⋅ ⋅ + ⋅ + ⋅ 

x y x x y y

x x

x x x x x x x x y y



 29

In the limit as the ensemble size goes to infinity, for a perfect model ( )2 1S Sρ∞ = + .  For 

univariate distributions, ρ∞
2

 is closely related to the predictability measure examined by Koster et 

al. (2000). 

Graham et al. (2000) found that increasing number of ensemble members did little to 

increase skill, even in the context of a perfect model. This can be understood directly in terms of 

ρn in (A3) and graphically as illustrated in Fig. 2. Graham et al. (2000) empirically calculated ρn 

with n=9 and n= 18 and compared it to their actual anomaly correlation (their Figs. 13 and 14). It 

is clear from A3 and Fig. 2 that little is expected to be gained by increasing ensemble size from 9 

to 18 members.  The advantage of using much larger (n ≥ 128) ensemble sizes lies in improving 

the ability to forecast the forecast skill.  Note also from A2, that any advantage for actual skill can 

be lost from model error, as illustrated by the dotted curve in Fig. 13. 
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Table captions 

Table 1: Integrations of Atmospheric General Circulation Models available at twice-daily and 

monthly resolution used in the present study 

Table 2: Average storm track pattern correlation between the observed winter-mean storm track 

and that predicted by the STM given 200mb height anomaly fields from NCEP-NCAR reanalysis 

(OBS) and ensemble-mean anomalies of CCM3.0 tropical SST forced (TOGA) and global SST 

forced (GOGA) integrations from 1950 to 1999. The skill is stratified by the magnitude of 

NINO3 and NINO4 indices and averaged separately over the Pacific-North America (PNA) and 

North Atlantic-European (NATL-EUR) regions.  Average correlations significant at or above the 

5% level are indicated by bold italics.  
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Figure captions 

 

Figure 1. Signal to noise ratio S from the JFM 1987 El Nino for (a) seasonal mean 500 mb 

vertical velocity, (b) seasonal 2-7 day bandpass variance of vertical velocity, and (c) seasonal 

mean precipitation. The contour interval is 0.2. The zero contour has been suppressed. The 10% 

significance level is 0.22 using a 2-sided t test. All plots are field significance at the 5% level 

assuming at least 15 esdof.  Pattern correlations between the respective fields are indicated next 

to the arrows. 

 

Figure 2. Expected anomaly correlation skill ρn of forecasts made from the mean of n=1, 12, 25, 

60, and infinite member ensembles as a function of the signal-to-noise ratio S. Thickened 

portions of curves illustrate uncertainty in expected skill ρn for S =0.7 due to uncertainty from 

estimating S using an n-member ensemble, assuming that S is distributed as a student-t statistic. 

[Adapted from Sardeshmukh et al. 2000]. 

 

Figure 3. (top) Seasonal mean and (bottom) interannual standard deviation of 2 to 7 day bandpass 

variance of (left) 500 mb vertical velocity and (right) 500 mb height variance from NCEP-NCAR 

reanalyses. The square root of each field is plotted. Contour intervals are (top left) 0.01 Pa s-1 (top 

right) 5 m, (bottom left) 0.005 Pa s-1, (bottom right) 2.5 m.  

 

Figure 4. Cross-validated skill of the empirical storm track model as function of the number of 

retained EOFs of January-March 200 mb height seasonal mean and 500 mb vertical velocity 

bandpass variance seasonal anomalies. (a) Normalized error. (b) Anomaly pattern correlation. 

Contour interval is 0.05 in both panels with the addition of (a) 0.623, 0.625 and (b) 0.595, 0.598 

contours. Shading begins at (a) 0.625, (b) 0.595.  Horizontal and vertical lines show the 

truncation used for the storm track model described in the text.  
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Figure 5: Seasonal anomalies for January-March 1987 from (left) NCEP reanalyses and (right) 

AGCM ensemble of 60 members forced with 1987 observed SSTs. (top) 200 mb height anomaly. 

(middle) 500 mb storm track (vertical velocity 2-7 day band passed variance anomaly) diagnosed 

using the empirical linear storm track model. (bottom) 500 mb storm track. The plotted quantity 

in the middle and bottom panels is the signed square root of the variance anomaly. Contour 

intervals are (top) 20m and (middle and bottom) 0.01 Pa/s with the zero contour suppressed. 

(top) Light shading indicates negative anomalies. (middle and bottom) Dark (light) shading 

indicates positive (negative) anomalies.  

 

Figure 6. Same as Fig. 5 but for 1989 January-March seasonal anomalies. 

 

Figure 7. Predictability of storm tracks estimated using the storm track model. Green shading 

begins at the 5% significance level of 0.25. Contour interval is 0.15 thereafter.  

 

Figure 8. Timeseries of anomaly pattern correlation for January-March (JFM) storm track 

anomalies. (a) and (b) show regions used in subsequent panels. (c) and (d) Pattern correlation 

over (c) the Pacific-North American (20-90N, 180-60W) and (d) North Atlantic-European 

sectors (20-90N, 60W-60E) of observed and STM diagnosed storm track anomalies using 200 

mb height JFM anomalies from (black bars) observed, (green bars) CCM3 AGCM forced with 

global SSTs, (blue bars) CCM3 AGCM forced with tropical SSTs. Thin horizontal line shows the 

5% significance levels for both AGCM integrations having skill. (e) Timeseries of JFM Nino3 

(orange and light blue) and Nino4 (red and dark blue) normalized by their respective standard 

deviations. 

 

Figure 9. Case dependence of the predictability of storm tracks. Comparison of expected local 

anomaly correlation skill for (a) 1987 and (b) 1989 global SST forcing estimated using 60-
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member ensembles to calculate the signal-to-noise ratio S and then applying Eq (1) to calculate 

ρ60. Contour interval is 0.15 starting at 0.25.  

 

Figure 10. Skill for 5-winter averages. Green shading begins at the 5% significance level of 0.4. 

Contour interval is 0.15 thereafter. 

 

Figure 11. As in Fig. 9 but for 5-winter averages. 

 

Figure 12. Linear trends for 1950-99. Plotted as the change over 50-years. (top panels) Trend in 

200 mb heights from (left) NCEP-NCAR reanalysis and (right) CCM3 GOGA. Contour interval 

is 20m. Negative trends are shaded. (middle and bottom) Trend in the omega storm track from 

the STM using 200 mb heights from (left) NCEP-NCAR reanalyses and (right) CCM3 GOGA. 

(bottom) Trend in the stormtrack from NCEP-NCAR reanalyses. Contour intervals is 0.01 Pa s-1, 

with the zero contour suppressed. Light (dark) regions indicate negative (positive) trends. 

 

Figure 13. Anomaly correlation skill of stormtrack forecasts made using the CCM3 and MRF9 

diagnosed stormtracks for January-March season. Solid curve shows the expected correlation 

skill ρn of forecasts made from the mean of n=12 member ensembles as a function of the signal 

to noise ratio S based on Eq (1). Dotted curve shows the expected skill ρ12 when a systematic 

error Se=2S is present in the forecast based on Eq (4). Symbols show the actual skill of storm 

track forecasts for the PNA region (filled circles) and North Atlantic-European region (diamonds) 

binned over similar S values. Bins widths are 0.25 from S=0 to S=1 and 0.5 thereafter. 

Percentage of cases in each bin is indicated. Error bars show the 95% confidence interval using 

the Fisher z-transformation and assuming 6 esdof. 
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Table 1: Integrations of Atmospheric General Circulation Models available at twice-daily and 

monthly resolution used in the present study 

Global SSTs Climatological 

1987 Jan-March 

1989 Jan-March 

90 members 

60 members 

60 members 

Sardeshmukh et al. 2000 

Compo et al. 2001 

 

 

NCEP MRF 9 

T40L18  

(twice-daily) 

 

NINO4 anomaly ±1 Jan-March 

±3, ±5 Jan-March 

90 members each 

45 members each 

This study 

 

Global SSTs (GOGA) 1951-1994 13 members Livezey et al. 1997 NCEP MRF 9 

T40L18  

(AMIP-style, 

monthly) 

 

Pacific SST anomaly 

(POGA) 

1951-1994 9 members Kumar and Hoerling 1998 

CCM3.0 

T42L18 

(AMIP-style, 

monthly) 

Global SSTs (GOGA) 

Tropical SST anomaly 

(TOGA) 

1950-1999 

1950-1999 

12 members 

11 members 

Kiehl et al. 1998 
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Table 2: Average storm track pattern correlation between the observed winter-mean storm track 

and that predicted by the STM given 200mb height anomaly fields from NCEP-NCAR reanalysis 

(OBS) and ensemble-mean anomalies of CCM3.0 tropical SST forced (TOGA) and global SST 

forced (GOGA) integrations from 1950 to 1999. The skill is stratified by the magnitude of 

NINO3 and NINO4 indices and averaged separately over the Pacific-North America (PNA) and 

North Atlantic-European (NATL-EUR) regions.  Average correlations significant at or above the 

5% level are indicated by bold italics. 

 

 |NINO3| ≥ 1σ |NINO3| < 1σ |NINO3| ≥ 1σ |NINO3| < 1σ 

 |NINO4| ≥ 1σ |NINO4| ≥ 1σ |NINO4| < 1σ |NINO4| < 1σ 

Number of Cases 

PNA 

TOGA 

GOGA 

OBS 

NATL-EUR 

TOGA 

GOGA 

OBS 

11 

 

0.68 

0.61 

0.72 

 

0.29 

0.30 

0.57 

9 

 

0.39 

0.36 

0.57 

 

0.11 

0.19 

0.57 

2 

 

0.13 

0.23 

0.65 

 

-0.12 

-0.24 

0.27 

28 

 

0.11 

0.25 

0.50 

 

0.05 

0.13 

0.57 
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Figure 1. Signal to noise ratio S from the JFM 1987 El Nino for (a) seasonal mean 500 mb 
vertical velocity, (b) seasonal 2-7 day bandpass variance of vertical velocity, and (c) seasonal 
mean precipitation. The contour interval is 0.2. The zero contour has been suppressed. The 10% 
significance level is 0.22 using a 2-sided t test. All plots are field significance at the 5% level 
assuming at least 15 esdof.  Pattern correlations between the respective fields are indicated next 
to the arrows. 
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Figure 2. Expected anomaly correlation skill ρn of forecasts made from the mean of n=1, 12, 25, 
60, and infinite member ensembles as a function of the signal-to-noise ratio S. Thickened 
portions of curves illustrate uncertainty in expected skill ρn for S =0.7 due to uncertainty from 
estimating S using an n-member ensemble, assuming that S is distributed as a student-t statistic. 
[Adapted from Sardeshmukh et al. 2000]. 
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Figure 3. (top) Seasonal mean and (bottom) interannual standard deviation of 2 to 7 day bandpass 
variance of (left) 500 mb vertical velocity and (right) 500 mb height variance from NCEP-NCAR 
reanalyses. The square root of each field is plotted. Contour intervals are (top left) 0.01 Pa s-1 (top 
right) 5 m, (bottom left) 0.005 Pa s-1, (bottom right) 2.5 m. 
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Figure 4. Cross-validated skill of the empirical storm track model as function of the number of 
retained EOFs of January-March 200 mb height seasonal mean and 500 mb vertical velocity 
bandpass variance seasonal anomalies. (a) Normalized error. (b) Anomaly pattern correlation. 
Contour interval is 0.05 in both panels with the addition of (a) 0.623, 0.625 and (b) 0.595, 0.598 
contours. Shading begins at (a) 0.625, (b) 0.595.  Horizontal and vertical lines show the 
truncation used for the storm track model described in the text. 
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Figure 5: Seasonal anomalies for January-March 1987 from (left) NCEP reanalyses and (right) 
AGCM ensemble of 60 members forced with 1987 observed SSTs. (top) 200 mb height anomaly. 
(middle) 500 mb storm track (vertical velocity 2-7 day band passed variance anomaly) diagnosed 
using the empirical linear storm track model. (bottom) 500 mb storm track. The plotted quantity 
in the middle and bottom panels is the signed square root of the variance anomaly. Contour 
intervals are (top) 20m and (middle and bottom) 0.01 Pa/s with the zero contour suppressed. 
(top) Light shading indicates negative anomalies. (middle and bottom) Dark (light) shading 
indicates positive (negative) anomalies. 
 



 46

 

 

 

 

 

 

 

OBS GCM

January-March 1989 Seasonal Anomalies

200 mb height

500 mb storm track
(Storm Track Model)

500 mb storm track

 
Figure 6. Same as Fig. 5 but for 1989 January-March seasonal anomalies. 
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Correlation of winter mean and model storm track

using observed
200 mb height

using GCM ensemble mean
200 mb height

CCM

MRF

Global SSTs Tropical SSTs  
Figure 7. Predictability of storm tracks estimated using the storm track model. Green shading 
begins at the 5% significance level of 0.25. Contour interval is 0.15 thereafter.  
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Figure 8. Timeseries of anomaly pattern correlation for January-March (JFM) storm track 
anomalies. (a) and (b) show regions used in subsequent panels. (c) and (d) Pattern correlation 
over (c) the Pacific-North American (20-90N, 180-60W) and (d) North Atlantic-European 
sectors (20-90N, 60W-60E) of observed and STM diagnosed storm track anomalies using 200 
mb height JFM anomalies from (black bars) observed, (green bars) CCM3 AGCM forced with 
global SSTs, (blue bars) CCM3 AGCM forced with tropical SSTs. Thin horizontal line shows the 
5% significance levels for both AGCM integrations having skill. (e) Timeseries of JFM Nino3 
(orange and light blue) and Nino4 (red and dark blue) normalized by their respective standard 
deviations. 
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(a) 1987

 

(b) 1989

Expected skill of storm track forecasts for

 
 
Figure 9. Case dependence of the predictability of storm tracks. Comparison of expected local 
anomaly correlation skill for (a) 1987 and (b) 1989 global SST forcing estimated using 60-
member ensembles to calculate the signal-to-noise ratio S and then applying Eq (1) to calculate 
ρ60. Contour interval is 0.15 starting at 0.25. 
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Figure 10. Skill for 5-winter averages. Green shading begins at the 5% significance level of 0.4. 
Contour interval is 0.15 thereafter.  
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Figure 11. As in Fig. 9 but for 5-winter averages. 
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Figure 12. Linear trends for 1950-99. Plotted as the change over 50-years. (top panels) Trend in 
200 mb heights from (left) NCEP-NCAR reanalysis and (right) CCM3 GOGA. Contour interval 
is 20m. Negative trends are shaded. (middle and bottom) Trend in the omega storm track from 
the STM using 200 mb heights from (left) NCEP-NCAR reanalyses and (right) CCM3 GOGA. 
(bottom) Trend in the stormtrack from NCEP-NCAR reanalyses. Contour intervals is 0.01 Pa s-1, 
with the zero contour suppressed. Light (dark) regions indicate negative (positive) trends. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

OBS GCM

1950-1999 Trend January-March Seasonal Anomalies

200 mb height

500 mb storm track
(Storm Track Model)

500 mb storm track

 



 53

 
 
 

 

0.0 0.5 1.0 1.5 2.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
n

o
m

al
y 

co
rr

el
at

io
n

Actual and expected skill ρ12

predicting JFM stormtrack anomalies

S =  ensemble mean anomaly 
       ensemble spread 

PNA

21.8 50.0 16.0 8.5 1.1 2.7

ρ12

ρ12 Se=2S

NATL-EUR

25.5 54.3 15.4 3.2 1.6

ρ12

ρ12 Se=2S

 
 

Figure 13. Anomaly correlation skill of stormtrack forecasts made using the CCM3 and MRF9 
diagnosed stormtracks for January-March season. Solid curve shows the expected correlation 
skill ρn of forecasts made from the mean of n=12 member ensembles as a function of the signal 
to noise ratio S based on Eq (1). Dotted curve shows the expected skill ρ12 when a systematic 
error Se=2S is present in the forecast based on Eq (4). Symbols show the actual skill of storm 
track forecasts for the PNA region (filled circles) and North Atlantic-European region (diamonds) 
binned over similar S values. Bins widths are 0.25 from S=0 to S=1 and 0.5 thereafter. 
Percentage of cases in each bin is indicated. Error bars show the 95% confidence interval using 
the Fisher z-transformation and assuming 6 esdof. 
 

 


